

Download you poster copy at www.noxxon.com

Final Results from the Phase IIa Study of the Anti-CXCL12 Spiegelmer[®] Olaptesed Pegol (NOX-A12) in Combination with Bortezomib and Dexamethasone in Patients with Multiple Myeloma Heinz Ludwig¹, Katja Weisel², Maria Teresa Petrucci³, Xavier Leleu⁴, Anna Maria Cafro⁵; Laurent Garderet⁶; Niklas Zojer¹; Kai Riecke⁷, Anna Kruschinski⁷; Thomas Dümmler⁷; Robin Foa³; Richard Greil⁸; Ibrahim Yakoub-Agha⁴; Monika Engelhardt⁹

¹Center for Oncology and Hematology, Wilhelminenspital Wien, Austria; ²Internal Medicine II, University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, CHRU de Lille, France; ⁵Dpt. of Oncology and Hematology, "Sapienza" University of Rome, Italy; ⁴Hematology, "Sapienza" University, Niguarda Ca´Granda Hospital, Milano, Italy; ⁶Hematology, CHU St Antoine, Paris, France; ⁷NOXXON Pharma AG, Berlin, Germany; ⁸IIIrd Medical Department, Paracelsus Medical University Salzburg, Austria; ⁹Internal Medicine I, University of Freiburg, Germany

Background and Aims

The L-stereo-isomer RNA aptamer (Spiegelmer[®]) olaptesed pegol (OLA) binds and neutralizes CXCL12. CXCL12 is responsible for trafficking and homing of normal and malignant blood cells to the bone marrow by interacting with the receptors CXCR4 and CXCR7. Preclinical studies have shown synergistic activity of CXCL12-targeting and bortezomib (BTZ).

This single arm study was conducted to assess the activity and safety of i.v. OLA added to the combination of BTZ (1.3 mg/m² i.v.) and dexamethasone (DEX, 20 mg p.o) in patients with relapsed / refractory multiple myeloma (MM).

Patients and Methods

From Aug 2012 to Aug 2014, 28 patients were treated according to a dose titration design shown in Figure 1. Ten patients presented with ISS stage 3, 10 had high risk cytogenetic features and 11 were refractory to prior therapy. 15 patients had previous BTZ (Table 1). OLA was given 1h prior to BTZ, DEX was given on the day of BTZ and the subsequent day. Response was evaluated based on the uniform IMWG response criteria (Rajkumar SV et. al. Blood 2011; 117: 4691-5). Plasma cell mobilization was studied by flowcytometry in the first 10 patients before the regular treatment regimen.

Figure 1: Study Design

Table 1: Baseline Patient Characteristics

Number of patients	N = 28; (males:fer	nales: 14:14)		
Age median (range)	66 years (47-79)			
	lgG	17 (61%)		
MM type	IgA	5 (18%)		
	Light chain only	6 (21%)		
	0	18 (64%)		
	1	5 (18%)		
Performance Score	2	5 (18%)		
	l:	4 (14%)		
	II:	11 (39%)		
ISS disease stage	III:	10 (36%)		
	Unknown	3 (11%)		
	High risk	10 (36%)		
Cytogenetic risk group	Standard	11 (39%)		
	Not available	7 (25%)		
Prior treatment lines median	(range)	2 (1 - 5)		
	Dexamethasone	25 (89%)		
Drien treatments (data of	Lenalidomide	20 (71%)		
Prior treatments (data of 26 patients)	Bortezomib	15 (54%)		
	ASCT	10 (36%)		
	Carfilzomib	1 (3.6%)		

Figure 2: Dose-Dependent Plasma Cell Mobilization

Figure 3: Individual Treatment Durations and Responses

Results

The median number of completed treatment cycles was 8. OLA resulted in a significant mobilization of myeloma cells with a 2-fold increase of circulating plasma cells for up to 3 days (Figure 2). Progression led to treatment termination in 8 patients. Objective responses were observed in 19 (68%) patients of the ITT population. Of note, response rates were similar in patients with high risk and standard risk cytogenetics (70% vs. 67%, Table 2)

The combination of OLA and BTZ dexamethasone was well tolerated without unexpected toxicities (Table 3).

Table 2: Response Evaluation as "Best Response"

	ITT population	Per protocol	High-risk	
		population	cytogenetics	
Ν	28	25	10	
ORR	19 (68%)	18 (72%)	7 (70%)	
CR	2 (7%)	2 (8%)	0	
vgPR	5 (18%)	5 (20%)	3 (30%)	
PR	12 (43%)	11 (44%)	4 (40%)	
MR	2 (7%)	2 (8%)	1 (10%)	
SD	5 (18%)	4 (16%)	1 (10%)	
PD	1 (4%)	1 (4%)	1 (10%)	
Not evaluable	1 (4%)	0	0	
M-protein	decreased	bv ≥50%	in 20 of	

evaluable patients (Figure 4).

Figure 4: Waterfall Plot of Maximum M-Protein Change

ASH 2014 San Francisco 653: Myeloma Therapy Abstract 2111

Conclusions

A single dose of OLA effectively mobilized plasma cells. OLA in combination with BTZ and DEX resulted in an ORR rate of 68% in the ITT population and PFS of 6.5 months. Response rates and PFS were similar in patients with or without high risk cytogenetic features or with or without previous exposure to BTZ. The combination regimen was well OLA merits further tolerated. study in randomized controlled trials.

Table 3: Hematologic and non-Hematologic AEs by Severity

	Any grade	Grade 1-2	Grade 3	Grade 4
Hematologic				
Anemia	11 (39.3%)	7 (25.0%)	4 (14.3%)	-
Thrombopenia	11 (39.3%)	5 (17.9%)	4 (14.3%)	2 (7.1%)
Neutropenia	5 (17.9%)	1 (3.6%)	4 (14.3%)	-
Lymphopenia	1 (3.6%)	-	1 (3.6%)	-
Gastrointestinal				
Diarrhea	14 (50.0%)	11 (39.3%)	3 (10.7%)	-
Constipation	9 (32.1%)	7 (25.0%)	2 (7.1%)	-
Infections				
Pneumonia	4 (14.3%)	1 (3.6%)	3 (10.7%)	-
Herpes zoster	3 (10.7%)	3 (10.7%)	-	-
Nervous system				
Polyneuropathy	5 (17.9%)	5 (17.9%)	-	-
General				
Asthenia	5 (17.9%)	4 (14.3%)	1 (3.6%)	-